Dissertation Defenses

Doctoral students who have an upcoming dissertation oral defense are posted here. So why not take this opportunity to learn about the research that our graduate students are doing!

Dissertation Defense for Tobias Dewhurst

Program: MECHANICAL ENGR: PHD

Department Contact Email: tracey.harvey@unh.edu

Defense Title: Dynamics of a Submersible Mussel Raft

Defense Date and Time: 09/01/16 2:30 pm

Defense Location: Jere Chase OE Lab, Room 130 (video classroom)

Defense Advisor: Prof. M. Robinson Swift


Defense Abstract: The dynamics of a submersible mussel raft were analyzed using wave tank testing, numerical modeling, and full-scale field tests. When submerged, the raft’s pontoons are flooded, and it is held vertically by surface floats attached by lines. This submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. During the prototype design process, numerical modeling in the program Aqua-FE™ indicated that the submerged configuration exhibited significantly less heave (vertical) and pitch (rotational) motion than the surfaced configuration. Subsequent 1/10 Froude-scaled wave tank testing validated those predictions. Full-scale field tests, each about three weeks long, provided 6-degree-of-freedom motion and mooring load data for a variety of wave and current forcing conditions. This data set confirmed that the submerged raft oscillates with significantly smaller heave and pitch amplitudes than the surfaced raft for wave periods of interest (generally between 2 and 8 seconds). The reduced motion of the submerged configuration is attributed to its decreased waterplane area and increased inertia, which reduce the heave and pitch natural frequencies so that they are below the wave frequencies associated with high energy. The submerged configuration greatly decreases vertical velocities and accelerations of the mussel rope attachment points, reducing feeding interruptions and mussel drop-off in storms. Numerical models in Aqua-FE™ and OrcaFlex showed good agreement with field measurements of raft motion, particularly for wave periods associated with storm energy at the semi-exposed test site.


 

Should you wish to cancel, make changes, or have problems with this form, please email the Graduate School with any changes or questions. Please be sure to include your name and which events you signed up for (or wish to sign up for).